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There exists lots of methods solving Multi-Task Learning(MTL) problems all
of which have been centralized so far. On the other hand, taking advantage from
the knowledge of many tasks to overcome the difficulty of solving MTL problems
seems to be a reasonable approach. In this thesis we have introduced a distributed
framework so as to reduce the computational time and amount of memory required
for the system to solve the MTL problem for the first time. Using this framework,
we would be able to obtain a better performance by employing more tasks without
loss of knowledge. The method we are going to introduce here has a convergence
rate of O( 1

K ), where K is the number of iterations to reach the optimal solution,
which is the best considering current distributed optimization algorithms.

HTTP://WWW.SHIRAZU.AC.IR
http://cse.shirazu.ac.ir
http://ece.shirazu.ac.ir




ix

Acknowledgements
I have to thank my supervisor, Dr. Sattar Hashemi for his support throughout these
years at Shiraz University and for helping me overcome problems that encountered
during my thesis. I certainly could not do this research without his guidance and
supervision.
I would like to thank Dr. Haitham Bou Ammar from Princeton University for help-
ing me and guiding me throughout this research and to make this collaboration
work. He though me not only science, but also was a guide to be a better human.
His role in this research is truly inevitable.
And special thanks to Dr. Ali Hamzeh as my advisor for listening to my questions
thoroughly and answering them so as to help me continue my research more con-
fidently.
I would like to thank my friends who have been 1“better than the passing river”
and I would never forget how they have been there for me in every situation.
Lastly, many thanks to my dear mother and father for supporting me all these years
without whom I could not be the person I am and be where I am standing now.

1A Poem by Sohrab Sepehri





xi

Contents

Declaration of Authorship iii

Abstract vii

Acknowledgements ix

1 Introduction 1
1.1 Multi-Task Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Formal Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Machine Learning Problems . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4.1 Regression Problem . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4.2 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . 5
1.4.3 Policy Gradient Reinforcement Learning . . . . . . . . . . . . 6

1.5 Structure of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Brief History of MTL Approaches 9
2.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 First steps through Multitask Learning . . . . . . . . . . . . . 9
2.1.2 Regularized MTL . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.3 Learning Task Grouping and Overlap in Multi-Task Learn-

ing(GOMTL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.4 An Efficient Lifelong Learning Algorithm(ELLA) . . . . . . . 11

2.2 Conclusion of previous approaches . . . . . . . . . . . . . . . . . . . . 12

3 Parallel Computing and Distributed Framework 13
3.1 Method of Multipliers . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Distributed Alternating Directional Method of Multipliers . . . . . . 13

3.2.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2.2 Dominant properties of DADMM . . . . . . . . . . . . . . . . 16

3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Proposing a Distributed framework for Multi-Task learn-
ing (DMTL) 19
4.1 Multi-Task Learning using a Shared Repository . . . . . . . . . . . . . 19
4.2 Splitting the tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3 DADMM for Matrix form Parameters . . . . . . . . . . . . . . . . . . 21
4.4 Regression Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.5 Reinforcement Learning using policy gradients . . . . . . . . . . . . . 24
4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25



xii

5 Experimental Results and analysis 27
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.2 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.2.1 Artificial Multi-task Learning Datasets . . . . . . . . . . . . . 28
Real Regression Dataset . . . . . . . . . . . . . . . . . . . . . . 28
Artificial Regression Dataset . . . . . . . . . . . . . . . . . . . 28
Construction of an Artificial MTL dataset . . . . . . . . . . . . 29

5.2.2 Multi-task Learning Datasets . . . . . . . . . . . . . . . . . . . 29
5.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.3.1 Evaluation metrics . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.3.2 Evaluation Setting . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.3.3 Optimal Value Convergence Analysis . . . . . . . . . . . . . . 30

Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.3.4 Computational Complexity Analysis . . . . . . . . . . . . . . . 36

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6 Conclusion and Future Work 41
6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

A Vector form DADMM Convergence Analysis 43
A.1 Notations, definitions and assumptions . . . . . . . . . . . . . . . . . 43
A.2 Convergence Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

A.2.1 Lemma 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
A.2.2 Lemma 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
A.2.3 Lemma 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
A.2.4 Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49



xiii

List of Figures

1.1 Learning a number of tasks simultaneously in everyday life . . . . . 2
1.2 Multiple tasks with their parameters . . . . . . . . . . . . . . . . . . . 2
1.3 Learning a general model using a shared repository . . . . . . . . . . 3
1.4 Sequential Decision Making Problem . . . . . . . . . . . . . . . . . . 5
1.5 Example of a simple MDP with three states and two actions - Wikipedia

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Train of thought . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Multitask backpropagation of four tasks with the same inputs(from

caruana1997multitask) . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Task specific and general part of the model parameter . . . . . . . . . 10
2.4 GOMTL approach’s flowchart . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 An online method for MTL . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1 Five processors’ communication links . . . . . . . . . . . . . . . . . . 14

5.1 Synthetic Samples are generated from a Gaussian distribution . . . . 28
5.2 β = 0.1 and k = 1 - London Schools Dataset . . . . . . . . . . . . . . . 31
5.3 β = 0.1 and k = 5 - London Schools Dataset . . . . . . . . . . . . . . . 32
5.4 β = 0.1 and k = 10 - London Schools Dataset . . . . . . . . . . . . . . 32
5.5 β = 0.1 and k = 15 - London Schools Dataset . . . . . . . . . . . . . . 33
5.6 β = 0.1 and k = 20 - London Schools Dataset . . . . . . . . . . . . . . 33
5.7 β = 0.1 and k = 1 - Synthetic Dataset . . . . . . . . . . . . . . . . . . . 34
5.8 β = 0.1 and k = 5 - Synthetic Dataset . . . . . . . . . . . . . . . . . . . 34
5.9 β = 0.1 and k = 10 - Synthetic Dataset . . . . . . . . . . . . . . . . . . 35
5.10 β = 0.1 and k = 15 - Synthetic Dataset . . . . . . . . . . . . . . . . . . 35
5.11 β = 0.1 and k = 20 - Synthetic Dataset . . . . . . . . . . . . . . . . . . 36
5.12 The centralized and DMTL approaches have converged to the same

solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.13 Consensus error of London Schools dataset has decreased as the al-

gorithm converges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.14 The centralized and DMTL approaches have converged to the same

solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.15 Consensus error of Synthetic dataset has decreased as the algorithm

converges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38





xv

List of Tables

5.1 Relative Accuracy and Convergence Solution of DMTL by varying k
and β = 0.1 - London Schools Dataset . . . . . . . . . . . . . . . . . . 36

5.2 Evaluation result of Centralized and DMTL . . . . . . . . . . . . . . . 36
5.3 Comparing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39





xvii

List of Abbreviations

ML Machine Learning
RL Reinforcement Learning
MTL Multi-Task Learning
DMTL Distributed framework for Multi-Task Learning
ADMM Alternating Directional Method of Multipliers
DADMM Distributed Alternating Directional Method of Multipliers
GOMTL Grouping and Overlap in Multi-Task Learning
ELLA Efficient Lifelong Learning Algorithm
MDP Markov Decision Process





xix

To my great mother, kind father and wonderful brother. . .





1

Chapter 1

Introduction

Multi-Task learning(MTL) is one of Machine Learning(ML) approaches that solves
a number of learning tasks simultaneously by using task commonalities and task
differences so as to obtain a more efficient and accurate model. This approach is
appropriate especially when we have few samples for each of the problems 1.2.
Thus, taking advantage from sharing of knowledge by learning the models jointly
can help us obtain more robust models.
In this chapter, we are going to:

• introduce the “MTL problem”,

• discuss the drawback of MTL,

• talk about the motivation of our proposed approach,

• introduce the prerequisites needed for the rest of the chapters and

• define the structure of this document.

1.1 Multi-Task Learning

MTL is a form of knowledge reuse which learns a number of problems jointly with
the goal of improving the performance of learning algorithms. For instance, you
may want to learn models for a number of related tasks such as the ones shown in
figure 1.1. You should be learning models to hold your phone, hold a clock, hold
your notebook, hold a laptop, etc. together as one person.
Obviously, the tasks should be related in order to share knowledge. As you have
seen, the concept behind all the tasks in figure 1.1 is holding and all the tasks share
the information required for holding an object.
One of the approaches in MTL is to use a shared repository in order to model the re-
lationship between tasks and one of the existing methods to model a shared reposi-
tory is by using a shared space of d latent task parameters. We are going to explain
more about this approach in the next chapter.
The convections we are using throughout this document is such that we would
represents matrices with bold uppercase letters, vectors with bold lowercase letters
and scalars with normal letters. For instance, X,x, andα represent a matrix, vector
and scalar respectively.
Parenthetical subscripts represents task related quantities(e.g., matrix A(t) and vec-
tor a(t) are related to task t).
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FIGURE 1.1: Learning a number of tasks simultaneously in everyday
life

FIGURE 1.2: Multiple tasks with their parameters
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FIGURE 1.3: Learning a general model using a shared repository

1.2 Formal Definition

Consider T tasks numbered 1 through T, with parameter vectors:

{θ(1), . . . ,θ(T )}

By considering n to be the maximum among all task feature sizes, we can assume
that all tasks have n features while concatenating zeros to the end of the ones with
less than n features.
Therefore, we can consider n to be the number of each task’s features without loss
of generality; thus θ(t) ∈ Rn×1.
In our MTL formulation, each of θ(i)s are calculated using a linear combination of
d latent components of a shared repository, L ∈ Rn×d, as shown in figure 1.3.
Thus, θ(t) can be decomposed into a matrix L ∈ Rn×d and a weight vector s(t) ∈
Rd×1 and be written it as Ls(t).
We may say that each column of matrix L, represents an abstract task with dimen-
sion n and each of the T task parameters can be represented by a weighting of these
d abstract tasks.
Each of the T columns of Matrix S represents the weight, s(t), for each of the tasks.
Hence, s(t) is task t’s weight for each of the d components. So, in this formulation
each of the task models use the shared repository’s knowledge.
The main objective is to minimize the predictive loss over all tasks using the models
with shared repository and It is defined as:

min
L,S

eT (L,S) (1.1)

As we have divided each of the model parameters into a shared repository and a
task specific weighting part, s(t)s are independent. Gaining advantage from the
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shared repository model of Ls(t) and the fact that s(t)s are independent, the main
objective would be written as:

= min
L,S

1

T

T∑
t=1

{ 1

nt

nt∑
i=1

L
(
f
(
x
(t)
i ;Ls(t)

)
, y

(t)
i

)
+ µ1||s(t)||1

}
+ µ2||L||2F (1.2)

In the coming chapters we will explain more about the existing methods and our
proposed idea.

1.3 Motivation

As mentioned before, we have few samples for each of the tasks. Therefore, we
can not find a robust parameter using each task’s few data. One of the approaches
to enhance the prediction performance of each task would be to gain advantage
from the shared knowledge and one idea is to use a shared repository. There exists
lots of methods which use shared repository and we are going to explain them
in more detail in chapter 2. However, one possible idea to learn a better shared
repository is by increasing the number of tasks we are going to use. To learn a
complex model with many features, we would need a large number of tasks which
would increase the time and space required to obtain the result. Therefore, we
are going to propose a distributed framework to increase the learning speed and
reduce space requirements.

1.4 Machine Learning Problems

Machine learning(ML) problems are divided into three dominant categories: Su-
pervised, Unsupervised and Reinforcement Learning approaches.
In this section, we are going to explain two instances from the first and last group
of Machine Learning problems. The first one is the “Regression problem” and the
second one is the “Policy Gradient Reinforcement Learning problem”. In this re-
search we are going to use these two problems to demonstrate the effectiveness of
our proposed approach in MTL. Thus, we are going to solve these problems while
taking advantage from MTL.

1.4.1 Regression Problem

Regression problem is one of supervised learning type problems bishop2006pattern
Given nt training samples, X(t) ∈ Rnt×n, and their corresponding labels, y(t) ∈
Rnt×1, for task t, the goal is to predict the correct label y ∈ R for a new instance
x ∈ Rn×1. Assuming a function, f(x) : Rn×1 → R, to be the model of the problem,
we have to estimate model parameters by introducing a loss function, L(f(x), y).
A common choice of loss function for regression is squared loss given by:

L(f(x;θ), y) = {y − f(x;θ)}2
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FIGURE 1.4: Sequential Decision Making Problem

Therefore, the objective function would be to minimize the loss function over all
instances:

min
θ

nt∑
i=1

L(f(x
(t)
i ;θ), y

(t)
i ) = min

θ

nt∑
i=1

{y(t)i − f(x
(t)
i ;θ)}2

An example of regression problem is predicting the house prices. The problem is
to predict the value of a house price given features like it’s area, number of rooms,
the house’s location, etc. .

1.4.2 Reinforcement Learning

People always make decisions that depend on each other. In other words, their
choices are based on the sequence of some states and actions that are taken place in
past. The mathematical model for sequential decision making is a Markov Decision
Process(MDP).
As described in puterman2014markov and szepesvari2010algorithms Consider

an agent observing a state at a specified point of time. It makes a decision based on
it’s current state and receives an instant reward while the environment changes to
a new state. This process can be demonstrated in figure 1.4.
A MDP is a tripletM = (X ,A,P) where it’s elements are defined as:

• X : countable nonempty set of environment states,

• A : countable nonempty set of environment actions,

• P(x, a, y) : X ×A×X 7→ R: The state transition probability function which
for every triplet (x, a, y) gives the probability of moving from state x to y
provided that action a has been chosen in state x,

• r(x, a) : X ×A 7→ R : immediate reward function which gives the reward of
choosing action a in state x for every state-action pair (x, a).

Each reinforcement learning(RL) task can be modeled by a Markov Decision Pro-
cess. RL is a type of ML problems that uses some sampling approach in which an
agent tries to find MDP’s solution by employing simulation. In other words, RL
is learning of what to do - how to map situations to actions - so as to maximize a
numerical reward signal by learning sequential actions. To be more precise:
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FIGURE 1.5: Example of a simple MDP with three states and two
actions - Wikipedia

• τ : A trajectory is a sequence of state,action, rewards, s1, a1, r1, s2, a2, r2, . . . sn, an, rn, sn+
1, till the agent reaches the terminal state which also can be referred to as be-
haviour.

• R(τ) 7→ <: Return function of a trajectory which is the discounted sum of
rewards for a given trajectory:

R(τ) =
n∑
i=1

γi ∗ r(si, si+1, ai) (1.3)

• γ: discount factor

Figure 1.5 is an example of a RL task represented by a three-state and two-action
MDP. This method has become more and more popular due to it’s ability to per-
form well even on complex real world problems.
A RL problem can be solved using either “Direct” or “Indirect” learning approaches.
“Value-based Learning” approaches are among Indirect approaches while we are
going to investigate Policy Gradient RL(PGRL) methods that are among the Direct
approaches.

1.4.3 Policy Gradient Reinforcement Learning

To build up an intuition, consider a continuous state-action environment. If we
choose a parameter as policy of the agent and define the RL problem with an opti-
mization problem in terms of the policy parameter, we could solve the problem by
searching the policy space.
The idea to use policy search methods for episodic reinforcement learning tasks
and it’s relation to policy gradient methods is introduced in kober2009policy and
we are going to investigate this approach here in brief.
What we are searching for is the policy parameter to maximize the cumulative re-
ward of the agent in long term. So, let’s introduce a policy π(ai|xi) which is a
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probability distribution with parameter θ ∈ Rn given state at time t. The agent
does action ai and reaches the state xi+1 while receiving reward ri. As we are fo-
cusing on episodic RL tasks with episodic restarts, we use n to represent the length
of each trajectory.
Since the general goal in reinforcement learning is maximizing the expected return
of the agent, we can write objective function for our optimization problem as be-
low:

max
θ
J(θ) = max

θ

∫
τ
pθ(τ)R(τ)dτ (1.4)

where

pθ(τ) = p0(x1)
H∏
h=1

p(xh+1|xh, ah)πθ(ah|xh) (1.5)

and p0(x1) denotes the initial state distribution, p(xi+1|xi, ai) the probability of
reaching the next state xi+1, given the current state xi, and action ai while Rτ rep-
resents the expected return of the given trajectory. For now, let’s assume that θ is
our current parameter and θ′ to be the parameter we are searching for. By taking
the logarithm of J(θ′), we can reach the blow equations as:

log J(θ) = log

∫
τ
pθ(τ)R(τ)dτ

= log

∫
τ
pθ(τ)R(τ)

pθ′(τ)

pθ(τ)
dτ (1.6)

Since the logarithm function is concave, equation 1.6 leads to the below equation
using Jensen’s inequality:

log

∫
τ
pθ(τ)R(τ)

pθ′(τ)

pθ(τ)
dτ ≥

∫
τ
pθ(τ)R(τ) log

pθ′(τ)

pθ(τ)
dτ + const. (1.7)

which is proportional to:

−D(pθ(τ)R(τ)||pθ′(τ)) = Qθ(θ′)

where,

D(p(τ)||q(τ)) =

∫
p(τ) log

p(τ)

q(τ)
(1.8)

defines the Kullback-Leibler divergence which is introduced by kullback1951information
Taking the logarithm of p(τ) which is defined in 1.5 leads to:

log pθ(τ) = log p0(x1) +
H∑
h=1

log p(xh+1|xh, ah) +
H∑
h=1

log πθ(ah|xh) (1.9)
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Next, we have to compute log πθ(ah|xh) and by assuming that our policy is a Gaus-
sian function, we will reach:

log πθ(ah|xh) =
−1

2

[(
Σ
−1
2 [ah −Xhθ]

)T (
Σ
−1
2 [ah −Xhθ]

)]
(1.10)

Using 1.7, 1.9 and 1.10, we want to write the optimization equation. Considering
that we have n trajectories for the current task,

max
θ

J(θ) = min
θ

1

n

n∑
i=1

{
R(τi) ∗ (a(i) −X(i)θ)TΣ−1(a(i) −X(i)θ)

}
(1.11)

Where a(i) represents a vector consisting of ith trajectory’s corresponding actions
and X(i) represents their corresponding states.
Obviously, the objective function for RL looks like the one for weighted regression
problem. These two problems would be used in 4 as the problems we are going to
use to solve using MTL.

1.5 Structure of this thesis

This thesis includes six chapters. After the “Introduction” chapter, the previous
approaches of MTL are investigated in the second chapter.
In the third chapter, we would get familiar with one of the famous distributed and
parallel computing approaches to solve an optimization problem.
The proposed method and all the details revolving our work will be presented in
chapter four and we would report the results and analyze our proposed approach
using the experimental results in the fifth chapter.
Finally, in the sixth chapter we would conclude and suggest some of the possible
future extensions for the presented research.
Moreover, some of the mathematical proofs are included in appendices.
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Chapter 2

Brief History of MTL Approaches

As explained by Salvucci in the psychological publication of MultiTaskingMind
the story of Multi-task learning problems goes back to 1890 when James discussed
human attention as “several simultaneously possible train of thoughts” - figure 2.1.
Not only in psychology, MTL have also been introduced in computer science from
long time ago. We are going to introduce some of the previous approaches in this
chapter and use some of them to compare our model with.

2.1 Related Work

2.1.1 First steps through Multitask Learning

One of the first attempts on MTL goes back to 1993. In the article of caruana1997multitask
it is described as an inductive transfer that increases the performance of a number
of related tasks by taking advantage from generalization and use of general knowl-
edge.
One of the approaches used in this work is to measure task relatedness using back
propagation networks as can be seen in figure 2.2. This publication demonstrates
that using extra tasks can improve the performance and also clarifies how MTL can
enhance generalization.

2.1.2 Regularized MTL

In 2004 when regularized methods were becoming popular, regularized MTL has
been introduced in RegMTL article. It is an extension of previously existed regu-
larization based learning methods for single task to a MTL problems.

FIGURE 2.1: Train of thought
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FIGURE 2.2: Multitask backpropagation of four tasks with the same
inputs(from caruana1997multitask)

FIGURE 2.3: Task specific and general part of the model parameter

Evgeniou and Pontil representing each task’s parameter by w(t) and assume that:

w(t) = w0 + v(t)

where v(t) is small when tasks are related and true models are close to w0 and try
to estimate w0 and v(t) simultaneously.
By dividing the problem’s parameter into two general and task-specific parts and
taking advantage from regularization of parameters, this article has analyzed the
influence of each part.
In otherwords, by considering the two extremes of having a fully-general or fully-
task-specified models. Other models can be found by adjusting the weight of each
of these two parts.

2.1.3 Learning Task Grouping and Overlap in Multi-Task Learning(GOMTL)

In 2012, Kumar et al. used an alternating approach to solve the introduced problem
of 1.2 equation.
In their article kumar2012learning the discriminating part suggested is to use a
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FIGURE 2.4: GOMTL approach’s flowchart

sparsity penalty that enforces each task to be sparse enough to be able to be re-
constructed by few number of the abstract tasks. Thus, this approach results in
producing almost same task specific parameters for related tasks.
Moreover, this approach uses Singular Value Decomposition(SVD) for initialization
which would reduce the convergence time.
To be more concrete, this method which is called GOMTL does the below steps to
reach the solution:

1. It first solves each task independently and it’s corresponding learned param-
eter is found using only it’s own samples.

2. Matrix W is introduced while each of it’s columns should be replaced by one
of the task parameters.

3. The initial value of L, which is the shared repository in this publication,
would be set to the d most discriminating basis vectors found by SVD of
matrix W.

4. Having initialized L, an iterative alternating approach would be used to find
the values of st∀t ∈ 1, . . . , T and L.

You can find the whole procedure in the flowchart of picture 2.4.
Although this approach finds the exact solution of the problem, it’s time complexity
is high. Therefore, the next approaches have been proposed to decrease the time
requirement of solving regularized MTL problems.

2.1.4 An Efficient Lifelong Learning Algorithm(ELLA)

The work of ELLA proposed an online solution for mutli-task learning as in figure
2.5. This method is called ELLA and it approximates the value of 1.2 using Taylor
expansion around each task’s parameter.
ELLA approach also uses an alternating method to solve the problem. The advan-
tages of this method compared to other previous approaches is the online formula-
tion of the problem which decreases the computational complexity.
In addition, this approach enforces two approximation steps which increases the
convergence speed. While the found solution of this approach is close to the exact
answer, one drawback of the algorithm is that it does not reach the optimum value
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FIGURE 2.5: An online method for MTL

for all problems.
The first approximation assumption takes place when using taylor expansion and
only using the first and second derivatives. Thus, this method would not work for
problems that are not polynomial or with power of higher than two.
The second approximation is encountered when the online procedure is introduced.
To be concrete, we have to update st∀t ∈ 1, . . . , T when L is updated; however, this
article only updates the value of st only for the recent task.
There exists lots of other methods presented in the literature of MTL such as: micchelli2004kernels
pentina2016active zhong2016flexible gupta2016new jacob2009clustered pontilmulti
jalali2010dirty which demonstrates the importance of MTL throughout the years.

2.2 Conclusion of previous approaches

We have presented some of the previous methods in the literature of MTL. It can
be seen that all the methods presented so far are centralized. They are trying to use
approximation and learn the task models and not any of them has taken advantage
from a distributed approach. Considering the increasing amount of data and infor-
mation, the need for processing the data with higher speed and lower complexity
has arisen and the need for distributed computing is obvious. Therefore, we are
going to propose a distributed framework to solve MTL problems.
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Chapter 3

Parallel Computing and Distributed Framework

Parallel Computing is a category of methods for which lots of calculations is done
by splitting the task into a number of subtasks and doing the computation for each
part separately. The results should be combined and the final outcome is computed
in the last resort.
In this chapter, we are going to focus on a distributed approach to solve an opti-
mization problem which would be our main tool in the proceeding chapters.

3.1 Method of Multipliers

Methods of multipliers started by Hestenes and Powell in 1969 hestenes1969multiplier
. Afterwards, in 1976, Alternating Directional Method of Multipliers(ADMM) was
introduced by Gabay et al in gabay1976dual
This approach tries to solve an optimization problem consisting of two local cost
functions. It tries to find a global solution using an equality constraint on local so-
lutions which guides the algorithm to reach a global optimum in a robust way.
There also exists other approaches in this context such as the survey of boyd2011distributed
on the ADMM approach and analysis of the work.
Afterward, an extension of this approach was introduced by Wei and Ozdaglar
DADMM which is called Distributed Alternating Directional Method of Multipli-
ers(DADMM). DADMM tries to solve the optimization problem in a distributed
fashion using N local cost functions while each agent’s parameter is a to-be-learned
scalar. We are going to explore the extended form of this approach in more detail
next.

3.2 Distributed Alternating Directional Method of Multi-
pliers

In the DADMM approach a network of agents try to solve a global unconstrained
optimization problem cooperatively where the objective function is the sum of the
local privately known objective function of each agent. While DADMM has con-
sidered each agent to have a scalar variable as the local parameter, we have ex-
tended the approach to vector form local parameters.

3.2.1 Formulation

DADMM has concentrated on solving an optimization problem consisting of N
different local cost functions with N processors. Each of these N processors tries
to find it’s local solution while satisfying the equality constraint on each model’s
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FIGURE 3.1: Five processors’ communication links

obtained response so as to reach a global solution.
You may see an example of how five different processors interact in figure 3.1. So,
we consider having a network such as 3.1, represented by a graph G = V, E with N
nodes and M edges where V symbolizes the set of nodes and E refers to the set of
undirected edges.
Each node has its own cost function fi : Rd → R which does not have to be differ-
entiable. Therefore, as explained before, our main objective is the sum of the local
objectives defined as:

min
θ∈Rd

N∑
i=1

fi(θ)

Now, consider that each agent has its own privately known local variable. To find
the global solution, we have to assure that the local variables are equal. Therefore,
the below objective would equal the previous one:

min
θ

N∑
i=1

fi(θi) (3.1)

s.t. θ1 = · · · = θN

Where θ ∈ RN×d and θi ∈ Rd × 1 for all i. Therefore, θ = [θ1, . . . ,θN ]T .
On the other hand, consider a matrix A, having M rows, each row representing an
equality constraint and N columns corresponding to the θis.
All the elements of each row are zero except for two equality constraint variables.
For instance, if we want to show θi − θj = 0, the ith element should be 1 and the
jth element should be -1.
Employing this rule, we can represent processor connections with a directed graph.
For each edge, we consider the node with positive multiplier as output and the
node with negative weight as input. Consequently, each node would have a set of
successors and predecessors.
It is worthed mentioning that if we want all parameters to reach a global solution,
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the graph we are using should be a tree.
Using the introduced definitions above, the matrix of figure 3.1 would be:

A =



1 −1 0 0 0
1 0 0 0 −1
0 1 −1 0 0
1 0 1 −1 0
0 0 1 0 −1
0 0 0 1 −1


In addition, we define a function F as:

F (θ) =
N∑
i=1

fi(θi) (3.2)

Using matrix A and relation 3.2, equation 3.1 could be rewritten as:

min
θ
F (θ) = min

θ

N∑
i=1

fi(θi) (3.3)

s.t. Aθ = 0

Equation 3.3 shows the mathematical formulation of the introduced problem which
is well-known to be General Consensus Problem(GCP). In other words, GCP is the
problem where we want to reach a global solution using a set of local solutions
while these local ones should agree with each other in the last resort.
This approach has two main assumptions:

• Convexity of all local cost functions.

• Existence of Saddle Point for the Lagrangian function of the global problem
3.1.

The Lagrangian function for the vector form DADMM approach would be:

L(θ,λ) = F (θ)− λTvec
(
[Aθ]T

)
(3.4)

where L : RN×d × RMd×1 → R, λ ∈ RMd×1 is the vector of Lagrange multipliers
and λij ∈ Rd×1 refers to the Lagrange multiplier vector corresponding to edge
(i, j).
This method uses the Augmented Lagrangian approach by augmenting a penalty
them to the the Lagrangian function as defined below:

L(θ,λ)β = F (θ)− λTvec
(
[Aθ]T

)
+
β

2

(
vec
(
[Aθ]T

))T
vec
(
[Aθ]T

)

= F (θ) +
β

2

(
vec
(
[Aθ]T

)
− λ

β

)T(
vec
(
[Aθ]T

)
− λ

β

)
− λTλ

2β
(3.5)
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Algorithm 1 Distributed Alternating Directions Method of Multipliers

Require: the Adjacency matrix A

1: Initialization: Choose some arbitrary θ0
i in R for i = 1 ... N which are not

necessarily all equal;
2: while k ≥ 0 do
3: 1. each agent i updates it’s estimate Lki in a sequential order with:
4:

θk+1
i = arg min

θi

{
fi(θi)

+
β

2

∑
θj∈Pred(θi)

||θk+1
j − θi −

1

β
λkji||2

+
β

2

∑
θj∈Succ(θi)

||θi − θkj −
1

β
λkij ||2

}
(3.6)

5: 2. Each agent updates λji that he owns, for all j in P(i),
6:

λk+1
ji = λkji − β(θk+1

j − θk+1
i ) (3.7)

7: end while

Where β is the penalty parameter.
The approach used here to solve this distributed problem is an alternating approach
in the primal and dual spaces which is presented in algorithm 1 with more details.
This algorithm does a two step update for a number of iterations. In the first step,
the parameter values in the primal space are computed and updated while in the
second step, the same procedure happens for the dual parameters. The primal
space parameters are θi which are updated using the predecessor and successor
nodes.
By assuming that the updates in 3.6 and 3.7 are done in O(1), it can be proved that

this method would converge to the optimal solution with the convergence rate of
O( 1

K ).

3.2.2 Dominant properties of DADMM

As you could see in previous parts, DADMM approach has some important char-
acteristics.
First, it provides us with a distributed approach to solve an optimization problem
which can decrease the computational complexity and memory consumption for
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each processor.
Second, this method guarantees converging to the optimal solution in case the as-
sumptions are satisfied.
And finally, the rate of convergence for DADMM is faster than existing distributed
approaches as this approach has a convergence rate of O( 1k ) while best existing ap-
proaches converge with the rate of O( 1√

k
).

3.3 Summary

To sum up, we have introduced the vector form of DADMM approach in this chap-
ter and have proved that It has O( 1k ) rate of convergence in appendix A.
In the next chapter, we are going to extend this model to Multi-task learning prob-
lems with matrix form parameters.





19

Chapter 4

Proposing a Distributed framework for Multi-Task learning
(DMTL)

Investigating the literature of MTL, it is apparent that all previous methods have
focused on centralized approaches to find the proper model for the tasks. As num-
ber of samples for each task is not enough, should we increase the number of tasks,
we can have a more accurate estimate for the shared repository model and there-
fore more precise model for each of the tasks.
Obviously, as the number of tasks increases, not only the time and space complex-
ity for finding a solution would increase, but also it would not be possible to solve
the problems using a centralized approach in some cases. Therefore, taking ad-
vantage from a distributed approach could result in better performance. So, the
idea is to distribute the tasks among N different processors and solve the problem
using DADMM which would obviously decrease the time and space complexity
while guaranteeing to reach the optimum solution(provided that the assumptions
are satisfied).

4.1 Multi-Task Learning using a Shared Repository

As stated in Chapter 1, a MTL problem could be formulated as an optimization
problem to minimize the error over all tasks using their corresponding models. To
make it more concrete, we can describe it using the below formulation:

min
L,S

eT (L,S)

= min
L,S

1

T

T∑
t=1

{ 1

nt

nt∑
l=1

L
(
f
(
x
(t)
l ;Ls(t)

)
, y

(t)
l

)
+ µ1||s(t)||1

}
+ µ2||L||2F

In which, L ∈ Rn×d is considered to be the shared repository. And each task’s
parameter is obtained using a weighting of the shared repository dimensions. Since
each column of S ∈ RT×d is a weighting multiplier for one of the tasks, each of
the columns are independent from each other. Moreover, we have considered all
abstract tasks to have d dimensions.
As discussed before, we have assumed that all tasks have dimension n without loss
of generality and for notation simplicity. By assuming that the task parameters are
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independent, we can rewrite the above equation as:

= min
L

1

T

T∑
t=1

min
s(t)

{ nt∑
l=1

1

nt
L
(
f
(
x
(t)
l ;Ls(t)

)
, y

(t)
l

)
+ µ1||s(t)||1

}
+ µ2||L||2F (4.1)

where
(
x
(t)
l , y

(t)
l

)
is the ith training instance for task t, L is a known loss function,

and the L1 norm of st, ||s(t)||1 =
∑n

i=1 |s
(t)
i |, is used as a convex approximation to

the true vector sparsity.
Although equation 4.1 is not jointly convex considering L and S, it would be convex
by fixing one of the parameters and solving for the other. Therefore, it can be solved
by using an alternating approach of solving optimization problems. For simplicity,
we define function Mt(L, s

(t)) as below:

Mt(L, s
(t)) =

nt∑
l=1

1

T ∗ nt
L
(
f
(
x
(t)
l ;Ls(t)

)
,y

(t)
l

)
+
µ1
T
||s(t)||1 (4.2)

Therefore, the main equation can be rewritten as:

= min
L

T∑
t=1

min
s(t)

Mt(L, s
(t)) + µ2||L||2F (4.3)

We are going to discuss how to reformulate the above equation so as to be able to
solve the MTL problem by employing a distributed framework next.

4.2 Splitting the tasks

In this section, we are going to split the tasks among N processors and solve the
problem using a distributed framework.
By introducing N disjoint sets and splitting the tasks among them, we can divide
4.3 into N parts and rewrite it as below:

= min
L

∑
t∈T1

min
s(t)

Mt(L, s
(t)) +

µ2
N
||L||2F + · · ·+

∑
t∈TN

min
s(t)

Mt(L, s
(t)) +

µ2
N
||L||2F (4.4)

N different agents solve each of these N parts in parallel while trying to reach a
global solution in the end. So, the above equation can be written as:

= min
L

N∑
i=1

{∑
t∈Ti

min
s(t)

Mt(L, s
(t)) +

µ2
N
||L||2F

}
(4.5)

In the above formulation, Ti is a set containing ith processor’s tasks. If we let each
of these N parts work independently and enforce them to have equal solution by
putting an equality constraint on them, the solution would still be the same as
equation 4.5 which turns into:

= min
L

N∑
i=1

{∑
t∈Ti

min
s(t)

Mt(Li, s
(t)) +

µ2
N
||Li||2F

}
(4.6)
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s.t. L1 = · · · = LN

where, we have redefined L to be:

L =


vec(L1)

T

.

.

.
vec(LN )T


from now on and L ∈ RN×nd.

Similar to the DADMM approach, we require a two-step procedure to solve this
problem.
First, we can to find the minimum of 4.2 by solving for s(t). In this step, the value
of L is considered fixed and we can simply find s?(t) for all tasks using one of the
available dictionary learning approaches.
After updating {s?(t)|∀t ∈ {1, . . . , T}}, these parameters are considered fixed in the
second step and we have to solve the equation for Li. It is obvious that by fixing
S and assuming L to be a convex cost function, each local cost function would be
convex considering the parameter Li. By defining:

fi(Li) =
∑
t∈Ti

Mt(Li, s
?(t)) +

1

N
µ2||Li||2F (4.7)

and finding the solution for below equation:

F (L) =

N∑
i=1

fi(Li) (4.8)

s.t. L1 = · · · = LN (4.9)

we have reach the vector form DADMM problem and therefore, we can solve it
using a distributed framework.
There is merely one unsolved problem in our distributed formulation of MTL. As
we know, the DADMM framework works for the cost functions with scalar or vec-
tor input parameters while we have a matrix parameter in our formulation. We are
going to extend the DADMM approach to matrix form parameters using vectoriza-
tion and complete the DMTL framework.

4.3 DADMM for Matrix form Parameters

In this part, we are going to rewrite the main equation so as to reform the input
matrix to be a vector. If we can write each agent’s parameter in the vector form
and rewrite the objective function using the vectorized element, we can straightfor-
wardly solve MTL problem using DADMM. Thus, we have used the vectorization
technique.
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First, we can simply rewrite the constraint in 4.9 as:

vec(L1) = · · · = vec(LN )

And we can rewrite the equation in a closed-form as:

vec([AL]T ) = 0 (4.10)

which is equal to the constraint in 4.9. Second, we have to reformulate the main
problem. As the value of the main problem is a scalar, and vec of scalar has the
same value, we can pass 4.8 through a vec operator. So it would be:

vec(F (L))

= vec(
N∑
i=1

fi(Li))

=

N∑
i=1

vec(fi(Li))

Since fi(Li) : Rn×d → R, the vec operator passes through the function. Therefore:

vec(fi(Li)) = vec
(∑
t∈Ti

Mt(Li, s
?(t)) +

µ2
N
||Li||2F

)

=
∑
t∈Ti

vec
(
Mt(Li, s

?(t))
)

+
µ2
N
||Li||2F

=
∑
t∈Ti

vec
(
Mt(Li, s

?(t))
)

+
µ2
N

vec(Li)
Tvec(Li)

and again since Mt(Li, s
(t)) : Rn×d × Rd×1 → R:

vec
(
Mt(Li, s

?(t))
)

=

nt∑
l=1

1

T ∗ nt
vec
(
L
(
f
(
x
(t)
l ;Lis

(t)
)
,y

(t)
l

))
+
µ1
T
||st||1 (4.11)

So, if we can rewrite the loss function in terms of vec(Li), the problem could be
solved.
As you can see, this is a general framework and can help for solving many MTL
problems. We call this framework Distributed Multi-task Learning framework or
DMTL.
In the next sections, we are going to solve two examples of MTL problems using
our distributed approach by introducing their loss functions. One is the Regression
problem and the other is the Reinforcement Learning problem.
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4.4 Regression Problem

The first problem to trace our proposed framework with is the well known regres-
sion problem. Assume that the agent is trying to solve a number of related re-
gression problems. Therefore, we can solve the problem using MTL and a shared
repository. We merely have to choose a loss function representing our current prob-
lem:

L
(
f
(
x
(t)
l ;Ls(t)

)
, y

(t)
l

)
= (y

(t)
l − x

(t)
l Ls(t))T (y

(t)
l − x

(t)
l Ls(t)) (4.12)

where

f
(
x;θ

)
= xθ

while (xl, yl) is a paired instance. Consequently:

min
s(t)

Mt(Li, s
(t)) = min

s(t)

{ 1

nt ∗ T

nt∑
l=1

{
(yl − xlLis

(t))T (yl − xlLis
(t))
}

+
µ1
T
||st||1

}

= min
s(t)

1

nt ∗ T

(
y −XLis

(t)
)T(

y −XLis
(t)
)

+
µ1
T
||st||1 (4.13)

which can be found using one of the dictionary learning approaches such as lasso.
Now, we have to use vectorization to reshape Lis to be vec(Li):

= min
s(t)

1

nt ∗ T

(
y −

(
s(t)

T ⊗X
)
vec(Li)

)T(
y −

(
s(t)

T ⊗X
)
vec(Li)

)
+
µ1
T
||st||1

(4.14)

Therefore, we have provided the equal vectorized formulation of Mt(Li, s
(t)).

Having found s?(t) and fixing it’s value, we can find Li∀i ∈ {1, . . . , N} by solving
4.8 for vec(Li). By nulling it’s gradient, we can find the solution. The resulting
equation for the regression problem would be in the form of Avec(Li) = b where
A and b can be found by:

A =

ti∑
t=1

{ 2

nt ∗ T
(s(t)s(t)

T ⊗XTX) +
2µ2
T ∗N

Idn×dn

}
+ β

∑
j∈Pred(i)∪Succ(i)

1 (4.15)

b =

ti∑
t=1

2

nt ∗ T
(s(t)

T ⊗X)Ty (4.16)

+β
{ ∑
j∈Pred(i)

−vec(Li) +
λji
β

+
∑

j∈Succ(i)

−vec(Lj)−
λij
β

}
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4.5 Reinforcement Learning using policy gradients

In this section, we are going to find the optimal policy for a number of Reinforce-
ment Learning(RL) tasks in a multi-task learning setting.
Having introduced the policy gradient approaches in chapter 1, the objective for RL
problem would be the same as the general multi-task learning and the loss function
should be introduced. So,

min
L,S

eT (L,S) = min
L

1

T

T∑
t=1

{
min
s(t)
−J(Ls(t))) + µ1||s(t)||1

}
+ µ2||L||2F (4.17)

The policy we are using here is a Gaussian policy with parameter θ and the samples
are trajectories. Therefore, the loss function would be:

L
(
f
(
Xl;Ls

(t)
)
,al
)

= R(τl) ∗ (al −XlLs
(t))T (al −XlLs

(t)) (4.18)

where each column of X represents a training sample and al represents the lth tra-
jectory’s corresponding actions.
Employing this loss function in the general distributed multi-task learning setting
of equation 4.2 would lead to:

Mt(Li, s
(t)) =

1

nt ∗ T

nt∑
l=1

{
R(τl) ∗ (al −XlLs

(t))T (al −XlLs
(t))
}

+
µ1
T
||st||1 (4.19)

which is equal to the below vectorized format:

=
1

nt ∗ T

nt∑
l=1

{
R(τl) ∗ (al −

(
s(t)

T ⊗Xl

)
vec(Li))

T (al −
(
s(t)

T ⊗Xl

)
vec(Li))

}

+
µ1
T
||st||1 (4.20)

This can simply be solved by using simple lasso algorithm. Having found s?(t)s,
the equation in the distributed form to be solved for L would be:

min
L

N∑
i=1

ti∑
t=1

{
Mt(Li, s

?(t)) +
µ2
N
||Li||2F

}
(4.21)

fi(Li) =

ti∑
t=1

Mt(Li, s
?(t)) +

µ2
N
||Li||2F (4.22)

For simplicity, we have to rewrite the equation in the vectorized format and solve
equation 4.23 for vec(L).

L(L,λ) =
N∑
i=1

fi(Li)− λTvec
(
[AL]T

)
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+
β

2
vec
(
[AL]T

)Tvec
(
[AL]T

)
(4.23)

And the next step is to re-write fk(Lk) in the vectorized form so as to use the
DADMM approach:

fi(Li) =

ti∑
t=1

Mt(Li, s
?(t)) +

µ2
N

vec
(
Li
)Tvec(Li) (4.24)

where:

Mt(Li, s
?(t)) = (4.25)

1

nt ∗ T

nt∑
l=1

{
R(τl) ∗ (al − (s(t)

T ⊗Xl) ∗ vec(Li))
T (al − (s(t)

T ⊗Xl) ∗ vec(Li))

+
µ1
T
||st||1

}
In order to use DADMM, we have to find the minimum of fi(Li) by solving5Lifi(Li) =
0. Therefore the equation can be written as Avec(Li) = b, where:

A =

ti∑
t=1

{ nt∑
l=1

2

nt ∗ T
(s(t)s(t)

T ⊗XT
l Xl) +

2µ2
T ∗N

Idn×dn

}
+ β

∑
j∈Pred(i)∪Succ(i)

1

(4.26)

b =

ti∑
t=1

nt∑
l=1

2

nt ∗ T
(s(t)

T ⊗Xl)
Tal (4.27)

+β
{ ∑
j∈Pred(i)

−vec(Li) +
λji
β

+
∑

j∈Succ(i)

−vec(Lj)−
λij
β

}

4.6 Summary

So far, we have proposed the DMTL framework by extending the DADMM ap-
proach to the matrix form and distributing the MTL optimization equation. In other
words, we have proposed a way to make the matrix form MTL suitable for vector
form DADMM and provided it’s rate of convergence proof. So, we have guaran-
teed that our approach would reach the optimal solution provided that the assump-
tions are satisfied. In the next chapter, we are going to investigate this framework
using experimental analysis.
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Chapter 5

Experimental Results and analysis

5.1 Introduction

In this chapter we are going to prove our claims using empirical results. Moreover,
we are going to compare DMTL approach for the regression problem with previous
MTL approaches.
Since there has been no distributed approach introduced for MTL, we are going to
compare our model with two non-distributed models:

1. a simple centralized solver or Batch MTL: Which simply uses the whole data
and solves for L and then S iteratively.

2. GOMTL: a centralized batch solver as defined in GOMTL

3. ELLA: a centralized online solver as defined in ELLA

We will use the first model to demonstrate that our distributed approach reaches
the same solution as the centralized method and the other two to compare DMTL
method’s convergence value and time with.
As reported in ELLA GOMTL approach converges to a solution with lower MSE
compared to current approaches while ELLA has the characteristic of being faster
among all approaches.
Using the provided theoretical gauratees of appendix A, we know that DMTL’s
rate of convergence is O( 1k ) while ELLA has O( 1√

k
) where k is the number of itera-

tions. It is obvious that our method is faster using large enough datasets. Knowing
that GOMTL is more accurate that ELLA, we are going to demonstrate that our ap-
proach is more exact while converging faster comparing other two methods.
As we have seen in the previous chapter, the main equation in the centralized ap-
proach exactly equals the equation obtained in the distributed MTL framework.
Therefore, the obtained solution of the distributed framework would be the same
as the centralized approach while the former has a faster rate of convergence.
In this chapter, we are going to introduce some datasets first and analyze our ap-
proach.

5.2 Datasets

There are four datasets used to analyze our work. They can be grouped into two
categories of “Artificial Multi-task Learning Problem” and “Multi-task Learning
Problem” datasets.
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FIGURE 5.1: Synthetic Samples are generated from a Gaussian dis-
tribution

5.2.1 Artificial Multi-task Learning Datasets

These tasks are not MTL problems by themselves but they are simple regression
tasks that have enough instances so as to be divided into groups. We have used
them for two reasons:
First, the groups are related because they actually represent the same regression
problem.
Second, they can be called big data and would show the advantages of our ap-
proach over the centralized methods.

Real Regression Dataset

The real dataset we have used for this experiment is one of the UCI repository’s
(Lichman:2013) regression problem datasets named “Physicochemical Properties
of Protein Tertiary Structure(PPPTS)”. This dataset is taken from CASP datasets.
CASP or Critical Assessment of protein Structure Prediction is a worldwide exper-
iment for protein structure prediction. PPPTS dataset includes:

• 45730 Instances

• 9 Features.

Artificial Regression Dataset

To be able to analyze the work from different perspectives, we also have artificially
created a number of datasets by varying the number of samples m and features n.
We will refer to this data by “synthetic” dataset.
Having set the value for m and n, the procedure would be done in two steps:

1. Generate samples X ∈ Rm×n, randomly from a Gaussian distribution such
as figure 5.1

2. Construct the labels using y = 3X + ε
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Construction of an Artificial MTL dataset

To analyze the proposed framework, we have constructed a Multi-Task dataset us-
ing “Real Regression Dataset” and “Artificial Regression Dataset” by three steps
described below:

1. Set T as the number of tasks your problem encompasses.

2. Shuffle the samples.

3. Split the data to T different groups.

Each of these T groups represent a task. Therefore, we would have T tasks while
each one includes a number of instances.

5.2.2 Multi-task Learning Datasets

• Ella’s Synthetic Regression Tasks: A set of 100 random tasks with 13 features
and nt = 100 instances per task. The task parameter vectors were generated
as a linear combination of 6 randomly generated latent components in R12.
The vectors s(t) had a sparsity level of 0.5. The training data X(t) was gen-
erated from a standard normal distribution. The training labels were given
as y(t) = X(t)Tθ(t) + ε, where each element of ε is independent univariate
Gaussian noise. A bias term was added as the 13th feature prior to learning.

• London School dataset: It consists of 15362 students from 139 schools’ exam-
ination scores. We have considered the grades for each school as a separate
task and we ought to predict each student’s examination score by the end.
The features are the same as the ones used in ELLA and GOMTL and we
have also added a bias term. It is clear that each instance would have 27
features.

We are going to present the results for above datasets so as to empirically demon-
strate the advantages of our approach.

5.3 Evaluation

There exists two aspects that we are going to discuss in order to evaluate our ap-
proach.
On the one hand, we are going to show that our approach’s solution converge to
the same value as the simple batch centralized approach.
On the other hand, we are going to compare our model’s convergence time with
the centralized approaches and demonstrate that DMTL would converge faster in
most cases.

5.3.1 Evaluation metrics

To evaluate the models we have used “Mean Square Error” and “General Consen-
sus Problem Error” standard metrics which have been defined below:
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• Mean Square Error(MSE): It is defined as the average of squares of errors
where the error is the difference between the estimator and the estimated
value. More formally if we show the estimator by y and the estimated by ŷ:

MSE(Y, Ŷ) =
1

n

n∑
i=1

(yi − ŷi)2 (5.1)

Obviously, we have used this metric in our regression objective function to
estimate the model’s error in section 4.4.

• General Consensus Problem(GCP) Error: When all local variables should
agree, i.e., be equal for finding the solution, we have a GCP. Here, we have
defined GCP error as the standard deviation of all local solutions:

GCP(θ1, ...θN ) = std(θ1, ...θN ) (5.2)

5.3.2 Evaluation Setting

To evaluate the approaches, we have randomly partitioned the tasks among agents
for 5 times and found the average and standard deviation of the error values of
each approach.

Optimal Value Convergence setting: For the first part, the parameters µ1 and µ2
are the same for both methods and β and k,which is the number of iterations each
agent iterates to find L, is chosen using cross validation. We are going to show that
both approaches reach almost the same solution.
The horizontal line of the figure shows the iteration count while the vertical line
represents the main objective value of 4.8 which is MSE for our implementation.
Note that the algorithms would be represented by blue color as soon as they con-
verge and stop learning.
In addition, we will plot the GCP Error to show that the agents almost agree and
have almost found the same solution.

Computation time setting: For the second part, we have varied the number of
processors(agents) and shown that increasing the number of agents can help re-
duce the computation time as the number of tasks increase and they become more
complex. Moreover, the value for β and k is found using cross validation.
We have measure the DMTL method’s time by adding all iteration’s times till the
algorithm converges. Each iteration’s time is computed by adding the maximum
time among all processor’s for updating S, which is referred by 3.6, or L and the
time required to update the λ parameter when the agent’s are updating L, which is
referred by 3.7.

5.3.3 Optimal Value Convergence Analysis

In order to demonstrate that our DMTL approach can reach the same solution as the
simple centralized approach, we have run the algorithm on the “London Schools”
and “Synthetic” Datasets.
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FIGURE 5.2: β = 0.1 and k = 1 - London Schools Dataset

In addition, other than the centralized and DMTL approach, we have plotted an-
other model and named it “Mean MTL”. This model is the same as DMTL while the
error is computed by replacing all Lis with the average of all agent’s Li parameters
in the evaluation part. It will help us to see how the model reduces GCP error and
the agent’s share their knowledge.

Result

First, we are going to show the effect of increasing the value of k in the convergence
value result.
As you can see in table 5.1 and figures 5.2, 5.3, 5.4, 5.5 and 5.6 of London Schools
dataset, although the algorithm converges to the solution in the last resort, the be-
havior of DMTL becomes more close to the behavior of the GOMTL approach as
the k value increases.

We can see the same outcome for the Synthetic dataset in 5.7, 5.8, 5.9, 5.10 and
5.11.

In 5.14 and 5.12 figures, we see that both of the Centralized and DMTL ap-
proaches have converged almost to the same objective value for Synthetic and Lon-
don Schools datasets.
The result of running the experiment 10 times and averaging the results would lead
to the results in 5.2.

Moreover, by taking the difference between the value of the “mean DMTL” and
simple “DMTL” approach into account, we can see that in the initial steps of the al-
gorithm values are far from each other. This is a sign to show that the agent’s have
not shared any knowledge in the first steps. However, as the algorithm continues
and more iterations pass, the values become closer and both models reach the same
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FIGURE 5.3: β = 0.1 and k = 5 - London Schools Dataset

FIGURE 5.4: β = 0.1 and k = 10 - London Schools Dataset
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FIGURE 5.5: β = 0.1 and k = 15 - London Schools Dataset

FIGURE 5.6: β = 0.1 and k = 20 - London Schools Dataset
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FIGURE 5.7: β = 0.1 and k = 1 - Synthetic Dataset

FIGURE 5.8: β = 0.1 and k = 5 - Synthetic Dataset
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FIGURE 5.9: β = 0.1 and k = 10 - Synthetic Dataset

FIGURE 5.10: β = 0.1 and k = 15 - Synthetic Dataset
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FIGURE 5.11: β = 0.1 and k = 20 - Synthetic Dataset

TABLE 5.1: Relative Accuracy and Convergence Solution of DMTL
by varying k and β = 0.1 - London Schools Dataset

k DMTL value Relative Accuracy
1 10.9821 ± 0.052582 0.98989
5 10.9693 ± 0.034803 0.99106
10 10.99 ± 0.030575 0.98918
15 10.9981 ± 0.038333 0.98843
20 10.9319 ± 0.034606 0.99452

TABLE 5.2: Evaluation result of Centralized and DMTL

Dataset\Model Centralized DMTL Relative Accuracy
Synthetic 2.5534±0.020506 2.5745 ± 0.028577 0.9917

London Schools 11.2309 ± 0.060715 11.3377 ± 0.25453 0.9904

value in the end.
From another perspective, by looking at the GCP error of the DMTL approach in
figures of 5.15 and 5.13, the model error has decreased and the agents have reached
an agreement. So given a desired convergence error limit, our model has found a
general solution for all the agents.

5.3.4 Computational Complexity Analysis

Since we have completed analyzing the solution value of our approach, we are
going to investigate out method to watch the running time of DMTL in this part.
Although many of MTL approaches can be extended to this DMTL framework, the
base method we have used to solve MTL problem is Batch MTL for two reasons:
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FIGURE 5.12: The centralized and DMTL approaches have con-
verged to the same solution

FIGURE 5.13: Consensus error of London Schools dataset has de-
creased as the algorithm converges
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FIGURE 5.14: The centralized and DMTL approaches have con-
verged to the same solution

FIGURE 5.15: Consensus error of Synthetic dataset has decreased as
the algorithm converges



5.4. Summary 39

TABLE 5.3: Comparing

Dataset\Model Centralized DMTL Relative Accuracy
Synthetic 2.5534±0.020506 2.5745 ± 0.028577 0.9917

London Schools 11.2309 ± 0.060715 11.3377 ± 0.25453 0.9904

First, it has the best performance compared to all previous approaches and would
lead to a better solution.
And second, it does require more time to reach the solution and our distributed
approach can make it faster.

5.4 Summary

In this section, we presented our analysis of the convergence properties of our
DMTL model for multi-task regression problems and demonstrated that our method
is robust, fast and requires less memory requirement for each processor compared
to the centralized approaches.





41

Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis, we have successfully proposed a framework for MTL problems to be
solved in a distributed manner for the first time.
Moreover, we have proposed the solution of increasing the number of tasks so as to
be able to find a more robust model to solve the MTL problem and the idea to solve
the problem using our proposed distributed framework has resulted in reducing
the time and space complexity which makes large data processing more efficient.
In addition, our approach converges to the same value to which the closed form
solution would converge. In conclusion, we have contributed:

1. A Distributed framework for Multi-task learning,

2. A fast algorithm with low convergence rate by distributing the tasks among
K processors,

3. Decreased the memory consumption for each agent as the number of tasks
assigned to each agent is less,

4. Extended the DADMM approach to optimization problems with vector and
matrix form.

5. Proved that the Matrix form DADMM has O( 1k ) rate of convergence where k
is the number of iterations.

6.2 Future Work

Looking through the process of this research, there exists lots of ideas to be worked
on in future.

1. The experimental analysis of reinforcement learning problems can also be in-
vestigated.

2. One of the possible ideas is to extend this method for lifelong learning prob-
lems by introducing an online setting.

3. We can also extend this method to Reinforcement Learning problems in an
online setting.

4. This framework can also be extended to other applications such as face recog-
nition or inferring social network structure.
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Appendix A

Vector form DADMM
Convergence Analysis

In this part, we are going to present our analysis for the DADMM approach with the
input element to be in vector form. This analysis is mostly based on boyd2011distributed
and DADMM
We demonstrate that the rate of convergence for this case is alsoO( 1k ) where k is the
number of iterations. Moreover, we also count all node updates in each iteration as
one.

A.1 Notations, definitions and assumptions

As introduced in the main chapters, A ∈ RM×N , is an adjacency matrix while each
row represents a constraint(or an edge in the graph) and each column is related to
one of the agents.
We define matrix B ∈ RM×N whose value is assigned by B = min(0,A). Each row
of matrix B correspond to one edge (i, j) with i < j. All the elements of this row
would be zero except the value of -1 in position j.
Note that in this chapter X do not represent the samples. The parameter we are
searching for is X ∈ RN×d, each row of which represents the learning element of
each agent. Therefore it can be shown as:

X =



. . . XT
1 . . .

. . . XT
2 . . .
.
.
.

. . . XT
N . . .


While we represent the ith row and jth column of matrix X by [X]i and [X]j respec-
tively, for simplicity, we have defined Xi =

(
[X]i

)T here which represents the ith

agent’s parameter vector.
λ ∈ RMd×1 is the Lagrange multiplier and by λij ∈ Rd×1, we are referring to the
Lagrange multiplier vector corresponding to edge (i, j).
This proof is also based on the two assumptions of Convexity and Existence of
Saddle point.
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A.2 Convergence Analysis

Since we have introduced the required notation, we are going to introduce three
lemmas and provide main theorem’s proof in this section.

A.2.1 Lemma 1

Let {Xk,λk} be the iterates generated by our distributed algorithm for 3.3 while

Xk = (



. . .

. . .

. . .
X1 X2 . . . XN

. . .

. . .

. . .


)T and vector λk = [λkij ]ij,eij∈E . Then the below rela-

tion holds for all k:

F (X)− F (Xk+1)− vec
([

A(X−Xk+1)
]T)T

λk+1

+βvec
(

(X−Xk+1)T
)T

vec
([

(−A + B)TB(Xk+1 −Xk)
]T) ≥ 0 (A.1)

for any X ∈ RN×d, where A is the edge-node incidence matrix of the graph and
B = min(0, A).

Proof: We denote gi : Rd → R to be the function

gki (Xi) =
β

2

∑
j∈P (i)

||Xk+1
j −Xi −

1

β
λkji||2F +

β

2

∑
j∈S(i)

||Xi −Xk
j −

1

β
λkij ||2F (A.2)

and due to the update in 3.6,Xk+1
i is the optimizer of gki +fi. The optimality implies

that:

∃h(Xk+1
i ) ∈ ∂fi(Xk+1

i ) :
(
Xi −Xk+1

i

)T [
h(Xk+1

i ) +∇gki (Xk+1
i )

]
= 0 (A.3)

for all Xi ∈ Rd.
In addition, considering the definition of sub-gradient, we have:

fi(Xi) ≥ fi(Xk+1
i ) +

(
Xi −Xk+1

i

)T
h(Xk+1

i ) (A.4)

Therefore, by using A.3 and A.4 will conclude that:

fi(Xi)− fi(Xk+1
i ) +

(
Xi −Xk+1

i

)T∇gki (Xk+1
i ) ≥ 0 (A.5)
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By taking the derivative of gki , we obtain:

∇gki (Xi) = −β
∑
j∈P (i)

(Xk+1
j −Xi −

1

β
λkji) + β

∑
j∈S(i)

(Xi − Xkj −
1

β
λkij) (A.6)

and by substituting∇gki (Xk+1
i ) in A.5, we obtain:

fi(Xi)− fi(Xk+1
i ) +

(
Xi −Xk+1

i

)T [− β ∑
j∈P (i)

(Xk+1
j −Xk+1

i − 1

β
λkji)

+β
∑
j∈S(i)

(Xk+1
i − Xkj −

1

β
λkij)

]
≥ 0 (A.7)

Using 3.7 we get:

fi(Xi)− fi(Xk+1
i ) +

(
Xi −Xk+1

i

)T [ ∑
j∈P (i)

(λk+1
ji ) +

∑
j∈S(i)

(−λk+1
ij )

+
∑
j∈S(i)

β(Xk+1
j − Xkj )

]
≥ 0 (A.8)

If we sum the above equation over all agents, it turns into:

n∑
i=1

fi(Xi)−
n∑
i=1

fi(Xk+1
i ) +

n∑
i=1

(
Xi −Xk+1

i

)T [ ∑
j∈P (i)

(λk+1
ji ) +

∑
j∈S(i)

(−λk+1
ij )

+
∑
j∈S(i)

β(Xk+1
j − Xkj )

]
≥ 0 (A.9)

On the one hand, we know that:

n∑
i=1

(
Xi −Xk+1

i

)T [ ∑
j∈P (i)

λk+1
ji +

∑
j∈S(i)

−λk+1
ij

]

= −
[
([A]⊗ Id×d)vec(XT − (Xk+1)T )

]T
λk+1

= −vec
(
[A(X−Xk+1)]T

)T
λk+1 (A.10)

And on the other hand, we have:

n∑
i=1

(
Xi −Xk+1

i

)T [ ∑
j∈S(i)

β(Xk+1
j − Xkj )

]
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=

n∑
i=1

(
Xi −Xk+1

i

)T [ ∑
j∈S(i)

β(−[B]eij ⊗ 11×d)vec
(
[Xk+1 −Xk]T

)]

= βvec
(
[X−Xk+1]T

)T([
(−A + B)TB

]
⊗ Id×d

)
vec
(
[Xk+1 −Xk]T

)

= βvec
(
[X−Xk+1]T

)Tvec
([

(−A + B)TB(Xk+1 −Xk)
]T) (A.11)

Therefore, using A.9, A.10 and A.11 the proof of A.2.1 would be complete:

n∑
i=1

fi(Xi)−
n∑
i=1

fi(X
k+1
i )− vec

([
A(X−Xk+1)

]T)T
λk+1

+βvec
(

(X−Xk+1)T
)T

vec
([

(−A + B)TB(Xk+1 −Xk)
]T) ≥ 0

A.2.2 Lemma 2

Let {Xk,λk} be the iterates generated by the DADMM approach for problem 3.3.

The matrix Xk = (



. . .

. . .

. . .
X1 X2 . . . XN

. . .

. . .

. . .


)T and vector λk = [λkij ]ij,eij∈E . Then the

below relation holds for all k:

2vec
(
[AXk+1]T

)T
(λk+1 − λ?) + 2βvec

(
[AXk+1]T

)Tvec
(
[B(Xk+1 −Xk)]T

)
+2vec

(
[B(X? −Xk+1)]T

)Tvec
(
[B(Xk+1 −Xk)]T

)
(A.12)

=
1

β

(
||λk − λ?||2 − ||λk+1 − λ?||2

)
+ β

(
||vec

(
[B(Xk −X?)]T

)
||2 − ||vec

(
[B(Xk+1 −X?)]T

)
||2
)

−β||vec
(
[B(Xk+1 −Xk)]T

)
− vec

(
[AXk+1]T

)
||2 (A.13)

Proof. We know that λk+1 = λk − βvec
(
[AXk+1]T

)
. Therefore, vec

(
[AXk+1]T

)
=

1
β

(
λk+1 − λk

)
. In addition, we know that ||a + b||2 = ||a||2 + ||b||2 + 2aTb and

||a||2 − ||b||2 = (a − b)T (a + b). By rewriting A.12 and A.13 using the latter two
mentioned equations, we can prove A.2.2.
By rewriting A.12 using above formulas we obtain:

2

β
(λk − λk+1)T (λk+1 − λ?) + 2βvec

(
[AXk+1]T

)Tvec
(
[B(Xk+1 −Xk)]T

)
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+2vec
(
[B(X? −Xk+1)]T

)Tvec
(
[B(Xk+1 −X?)−B(Xk −X?)]T

)
Which is equal to:

=
2

β
(λk − λk+1)T (λk+1 − λ?) (A.14)

+2βvec
(
[AXk+1]T

)Tvec
(
[B(Xk+1 −Xk)]T

)
(A.15)

−2βvec
(
[B(Xk+1 −X?)]T

)Tvec
(
[B(Xk+1 −X?)]T

)
(A.16)

+2βvec
(
[B(Xk+1 −X?)]T

)Tvec
(
[B(Xk −X?)]T

)
(A.17)

By rewriting different parts of the above equation we can reach the right-hand side
of the A.2.2 which is A.13.
Equation A.16 equals:

−β||vec
(
B[Xk+1 −X?]T

)
||2 − βvec

(
[B(Xk+1 −X?)]T

)Tvec
(
[B(Xk+1 −X?)]T

)
(A.18)

And equation A.14 equals:

=
1

β
(λk − λk+1)T (λk+1 − λ?) +

1

β
(λk − λk+1)T (λk − λ?)

− 1

β
(λk − λk+1)T (λk − λ?) +

1

β
(λk − λk+1)T (λk+1 − λ?)

=
1

β
(λk − λk+1)T (λk+1 + λk − 2λ?)− 1

β
(λk − λk+1)T (λk+1 − λk)

=
1

β

(
||λk − λ?||2 − ||λk+1 − λ?||2

)
− βvec

(
[AXk+1]T

)Tvec
(
[AXk+1]T

)
(A.19)

Using A.18 and A.19, A.12 changes into :

1

β

(
||λk − λ?||2 − ||λk+1 − λ?||2

)
− β||vec

(
[B(Xk+1 −X?)]T

)
||2

+2βvec
(
[AXk+1]T

)Tvec
(
[B(Xk+1 −Xk)]T

)
− βvec

(
[AXk+1]T

)Tvec
(
[AXk+1]T

)
(A.20)

−βvec
(
[B(Xk+1 −X?)]T

)Tvec
(
[B(Xk+1 −X?)]T

)
+ 2βvec

(
[B(Xk+1 −X?)]T

)Tvec
(
[B(Xk −X?)]T

)
(A.21)
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The third line of the above equation, known as A.21 equals:

−βvec
(
[B(Xk+1 −X?)]T

)Tvec
(
[B(Xk+1 −Xk)]T

)
+ βvec

(
[B(Xk+1 −X?)]T

)Tvec
(
[B(Xk −X?)]T

)
= −βvec

(
[B(Xk+1 −XK)]T

)Tvec
(
[B(Xk+1 −Xk)]T

)
+βvec

(
[B(Xk −X?)]T

)Tvec
(
[B(Xk −Xk+1)]T

)
+ βvec

(
[B(Xk+1 −X?)]T

)Tvec
(
[B(Xk −X?)]T

)
= −βvec

(
[B(Xk+1 −XK)]T

)Tvec
(
[B(Xk+1 −Xk)]T

)
+ βvec

(
[B(Xk −X?)]T

)Tvec
(
[B(Xk −X?)]T

)
= −βvec

(
[B(Xk+1 −Xk)]T

)Tvec
(
[B(Xk+1 −Xk)]T

)
+ β||vec

(
[B(Xk −X?)]T

)
||2

Replacing A.21 with the above equation would lead to:

=
1

β

(
||λk − λ?||2 − ||λk+1 − λ?||2

)
+ β

(
||vec

(
[B(Xk −X?)]T

)
||2 − ||vec

(
[B(Xk+1 −X?)]T

)
||2
)

−β

(
vec
(
[B(Xk+1 −X?)]T

)Tvec
(
[B(Xk+1 −X?)]T

)
− 2vec

(
[B(Xk+1 −X?)]T

)Tvec
(
[B(Xk −X?)]T

)

+vec
(
[B(Xk+1 −Xk)]T

)Tvec
(
[B(Xk+1 −Xk)]T

))
(A.22)

where the last part which is in parentheses equals:

−β||vec
(
[B(Xk+1 −Xk)]T

)
− vec

(
[AXk+1]T

)
||2

and the proof is complete.

A.2.3 Lemma 3

Let {X?,λ?} be a saddle point of the Lagrangian function defined as in 3.4. Then

vec
(
[AX?]T

)
= 0 (A.23)

Proof. Considering the definition of saddle point, for any multiplier (X,λ) pair
where X ∈ RN×d and λ ∈ RMd, we have:

F (X?)− λTvec
(
[AX?]T

)
≤ F (X?)− (λ?)Tvec

(
[AX?]T

)
As the above relation holds for all λ, AX? = 0.

Using the three introduced lemmas, we are going to prove the main theorem
and demonstrate that the vector form DADMM approach also has the O( 1k ) rate of
convergence.
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A.2.4 Theorem

Let {X,λ} be the iterates generated by our distributed algorithm for 3.3 while Xk =

(



. . .

. . .

. . .
X1 X2 . . . XN

. . .

. . .

. . .


)T and vector λk = [λkij ]ij,eij∈E .

Let matrix A be the edge-node incidence matrix of the network and matrix B =

min 0,A. Let Yk = 1
k

∑k−1
s=0 X

s be the ergodic average of Xk up to time t. Then the
following relation holds for all t:

0 ≤ L(Yk,λ?)− L(X?,λ?) ≤ 1

k

( 1

2β
||λ0 − λ?||2 +

β

2
||vec

(
[B(X0 −X?)]T

)
||2
)

(A.24)

Proof. The first inequality is true using the definition of saddle point of the La-
grangian function.
So we are going to prove the second inequality. We have to start with A.1 from
Lemma 1 and set X? to variable X. For all the iterations we have:

F (X?)− F (Xs+1)− vec
(
[A(X? −Xs+1)]T

)T
λs+1

+βvec
(
[X? −Xs+1]T

)Tvec
(
[(−A + B)TB(Xs+1 −Xs)]T

)
≥ 0 (A.25)

We have shown the sthiteration above. Knowing that vec
(
[AX?]T

)
= 0 due to

feasibility of the optimal solution X?, the above relation would be:

F (X?)− F (Xs+1)− vec
(
[−AXs+1]T

)T
λs+1 + βvec

(
[X? −Xs+1]T

)Tvec
(
[−ATB(Xs+1 −Xs)]T

)
+βvec

(
[X? −Xs+1]T

)Tvec
(
[BTB(Xs+1 −Xs)]T

)

= F (X?)− F (Xs+1) + vec
(
[AXs+1]T

)T
λs+1

−βvec
(
[X? −Xs+1]T

)T (
A⊗ I

)Tvec
(
[B(Xs+1 −Xs)]T

)
+βvec

(
[X? −Xs+1]T

)Tvec
(
[BTB(Xs+1 −Xs)]T

)

= F (X?)− F (Xs+1) + vec
(
[AXs+1]T

)T
λs+1
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−βvec
(
[A(X? −Xs+1)]T

)Tvec
(
[B(Xs+1 −Xs)]T

)
+ βvec

(
[X? −Xs+1]T

)Tvec
(
[BTB(Xs+1 −Xs)]T

)

= F (X?)− F (Xs+1) + vec
(
[AXs+1]T

)T
λs+1

+βvec
(
[AXs+1]T

)Tvec
(
[B(Xs+1 −Xs)]T

)
+ βvec

(
[X? −Xs+1]T

)Tvec
(
[BTB(Xs+1 −Xs)]T

)
Using A.25, the above equation and adding vec

(
[AXs+1]T

)T
λ? to both sides of the

inequality we obtain:

F (X?)− F (Xs+1) + vec
(
[AXs+1]T

)T
λ? + vec

(
[AXs+1]T

)T (
λs+1 − λ?

)
+βvec

(
[AXs+1]T

)Tvec
(
[B(Xs+1 −Xs)]T

)
+ βvec

(
[X? −Xs+1]T

)Tvec
(
[BTB(Xs+1 −Xs)]T

)
≥ 0

Now we can use Lemma A.2.2 and reform the equation to be:

F (X?)− F (Xs+1) + (λ?)Tvec
(
[AXs+1]T

)
+

1

2β
||λs − λ?||2

+
β

2
||vec

(
[B(Xs −X?)]T

)
||2 ≥ 1

2β
||λs+1 − λ?||2 +

β

2
||vec

(
[B(Xs+1 −X?)]T

)
||2

+
β

2
||vec

(
[B(Xs+1 −Xs)]T

)
− vec

(
[AXs+1]T

)
||2 (A.26)

For all s. Therefore, by summing over s = 0, . . . , k − 1 we reach:

kF (X?)−
k−1∑
s=0

F (Xs+1) + (λ?)T
k−1∑
s=0

vec
(
[AXs+1]T

)
+

1

2β
||λ0 − λ?||2

+
β

2
||vec

(
[B(X0 −X?)]T

)
||2 ≥ 1

2β
||λk − λ?||2 +

β

2
||vec

(
[B(Xk −X?)]T

)
||2

+

k−1∑
s=0

β

2
||vec

(
[B(Xs+1 −Xs)]T

)
− vec

(
[AXs+1]T

)
||2 (A.27)

As we know, the function F is convex. Considering the definition of Yk,
∑k−1

s=0 F (Xs) ≥
kF (Yk). Therefore,

k−1∑
s=0

F (Xs) ≥ kF (Yk)
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So,

kF (X?)− kF (Yk) + k(λ?)Tvec
(
[AYk]T

)
+

1

2β
||λ0 − λ?||2 +

β

2
||vec

(
[B(X0 −X?)]T

)
||2 ≥ 0

By multiplying both sides of the equation by −1k we reach:

F (Yk)− F (X?)− (λ?)Tvec
(
[AYk]T

)
≤ 1

k

( 1

2β
||λ0 − λ?||2 +

β

2
||vec

(
[B(X0 −X?)]T

)
||2
)

Using (λ?)Tvec
(
AX?

)
= 0 and the definition of Lagrangian function results in the

anticipated relation of Theorem A.2.4. �

In summary, since function F is strictly convex and (λ?)Tvec
(
AX

)
is a linear

term; therefore, the Lagrangian is also strictly convex. Thus, L(X,λ?) has a unique
minimizer which is X? regarding the saddle point assumption.
In the last resort, having proven theorem A.2.4, the value of the Lagrangian func-
tion converges to L(X?,λ?) at the rate of O( 1k ) using the ergodic average sequence
Yk.
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