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Abstract

This report includes a summary of basics of probability and statistics along with
rudimentary concentration inequalities. This is a report in progress and is going
to be completed along the way of my PhD. I thank Dr. Odalric Maillard for his
feedbacks and helping me learn this concepts. This is an in progress document.
So, I would be grateful to know about any possible errors you may find.



Chapter 1

Concentration Inequalities

In this chapter, we are going to probe the world of concentration inequalities
and explore some cases for which we can have confidence guarantees using high
level understanding of concentration inequalities. More detailed and advanced
investigation of the topic can be found at [1]. We are going to provide bound
for:

e A Random Variable

e Sum of Independent Random Variables:
> X (1.1)
i=1

e A Function of different independent random variables

f(X1, Xo, ..., X5) (1.2)

and also guarantee find out how probable it would be if we bound.

1.1 Probability Prerequisites

There exists a number of concepts in probability that are required before going
into concentration inequalities:

o-algebra: Let us denote the outcome space by €2 and define o—algebra to
be a set F C 2 which satisfies three properties of: including €2, being closed
under complement and countable union.



1.1.1 Boole’s inequality(Union Bounds)

For a finite countable set of events A1, Ao, As, ..., A,, we have:
P(UpA;) < P(A)

Proof. Using induction: For n = 1, P(A;) = P(A41). Let us assume that
the inequality holds for n = k, and prove for n = k + 1. Since P(AU B) =
P(A)+P(B)—P(ANnB),forn=k+1:

P(UF1A4;) = P(UFA) 4+ P(Agy1) — P(UFA; — Agys)

The first part is bounded using induction base case, and the last part can be
eliminated since we are searching for an upper bound. therefore,

k+1

k
< ZP(Ai) + P(Aps1) = ZP(Ai)

1.2 One Random Variable

We want to find out the probability § that a random variable X is bounded
by € and based on the different assumption we make on X’s corresponding
distribution, we can find different guarantees [2]. More concretely,

P(X >¢) <6 (1.3)

1.2.1 Markov inequality

For any random variable X > 0,

Therefore,




Extending Markov: Markov inequality can be employed for non-negative
non-decreasing functions like ¢ defined on R, with the random variable X as:

P(X > ¢) <P($(X) = ¢(e)) < “ole)

Proof. Function ¢ is said to be non-decreasing if for every a < b on the
domain, ¢(a) < ¢(b). Therefore, if X > € and ¢ is non-decreasing, then ¢(X) >
6(e). Now, if (X > ¢) C (¢(X) > (e)), then P(X > ¢) < P(4(X) > 6(¢)).
Adding the non-negativity assumption, we can apply Markov inequality and
the result is obtained.
Let us see few applications of this extension: the Chernoff method and
Chebyshev inequality.

1.2.2 Chernoff bound Technique
For any ¢t > 0,

E AX
P(X > 6) :P(ez\X > ez\e) < [e)\e ]
e

(1.5)

Proof. The idea of chernoff bound technique is to write down an equivalent
inequality replacing the random variable with the moment generating function
of the random variable as demonstrated above which is obtained by choosing
P(V) = e

1.2.3 Chernoff Method
Using chernoff bound and therefore, assumptions of markov inequality, we know:
P(X >¢€) < exp *E[e*] (1.6)

Which holds true YA > 0. We want to choose a A that gives the tightest bound
for the above equation. Taking the logrithm of rhs, we need to find:

U (t) = inf —\e + log E[e*] = sup Ae — log E[e]
A0 A>0

Let us define Ux(\) = logEexp*® and using jensen inequality the convexity
of exp function, we get ¥x()\) > Elogexp*® = AEX. Therefore, we can get
YA < 0: e —logEexp* <0 for t > AEX and U% () can be extended to:

U (t) = ili% Ae — Ux(N)

which is called the Cramer transform with the dual function of ¥x(\). This
gives us the bound:
P(X >¢) <e ¥5x®



1.2.4 Chebyshev’s Inequality
For any random variable X, we can get:

< Var(X)

= 2

P(|X — EX|>¢) (1.7)

Proof. This is another extension of Markov’s inequality obtained by choosing
¢(t) = t? and defining a random variable Y = | X — EX|. Therefore,

P(X —EX|> = P(Y 2 < P(y? > &) < BIX_BXP) _ VorlX)

‘ (1.8)

€
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